Automorphism group of the complete transposition graph
نویسندگان
چکیده
منابع مشابه
The automorphism group of the reduced complete-empty $X-$join of graphs
Suppose $X$ is a simple graph. The $X-$join $Gamma$ of a set ofcomplete or empty graphs ${X_x }_{x in V(X)}$ is a simple graph with the following vertex and edge sets:begin{eqnarray*}V(Gamma) &=& {(x,y) | x in V(X) & y inV(X_x) },\ E(Gamma) &=& {(x,y)(x^prime,y^prime) | xx^prime in E(X) or else x = x^prime & yy^prime in E(X_x)}.end{eqnarray*}The $X-$join graph $Gamma$ is said to be re...
متن کاملAutomorphism Group of the Derangement Graph
In this paper, we prove that the full automorphism group of the derangement graph Γn (n ≥ 3) is equal to (R(Sn) ⋊ Inn(Sn)) ⋊ Z2, where R(Sn) and Inn(Sn) are the right regular representation and the inner automorphism group of Sn respectively, and Z2 = 〈φ〉 with the mapping φ : σ φ = σ−1, ∀σ ∈ Sn. Moreover, all orbits on the edge set of Γn (n ≥ 3) are determined.
متن کاملThe Automorphism Group of Commuting Graph of a Finite Group
Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and x, y ∈ X (x 6= y) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ∆(G). The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(∆(G)) is abelian if and only if ...
متن کاملAutomorphism group and diameter of a graph
Given a connected graph Γ of order n and diameter d, we establish a tight upper bound for the order of the automorphism group of Γ as a function of n and d, and determine the graphs for which the bound is attained.
متن کاملTHE AUTOMORPHISM GROUP OF FINITE GRAPHS
Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2015
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-015-0602-5